skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Chan, Thomas"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. The synthesis of electrode-attached Rh(I) diisocyanide coordination polymers that incorporate a series of arylene diisocyanide linkers and which are grown from gold surfaces by a bottom-up, layer-by-layer procedure that allows for a high level of control for the film thickness is reported. A seed layer of the arylene diisocyanide ligand is used to template directional growth of the coordination polymer made using the well-studied square-planar rhodium tetrakis(isocyanide) as the metal node. Materials ranging from 1 to 30 layers were prepared via layer-by-layer solution-phase deposition. Characterization of the polymer films using scanning electron microscopy and ellipsometry shows layer-by-layer control in these films with linear thickness growth per layer. Phasemodulated infrared reflection absorption spectroscopy (PM-IRRAS), diffuse reflectance UV−vis, and X-ray photoelectron spectroscopy (XPS) were used to confirm the structures of the films. Although prior reports of related coordination polymers and films based on diisocyanides showed considerable air-instability, the films reported here demonstrate significantly improved chemical stability and electrochemical stability at a moderately high applied bias. Electrochemical characterization and ex situ XPS demonstrate that these diisocyanide films are stable to stripping at potentials up to −2.2 V versus decamethylferrocene in acetonitrile, supporting their relevance for electrochemical applications. 
    more » « less
  2. The synthesis, structure, and reactivity of a μ3-SnH capped trinuclear nickel cluster, [Ni3(dppm)33-H)(μ3-SnH)], is reported. This complex undergoes oxidative addition chemistry, alkyne insertion, and subsequent hydrogenation. 
    more » « less